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Abstract – Chaotic systems, that have a small Lyapunov exponent, do not obey the common
random matrix theory predictions within a wide “weak quantum chaos” regime. This leads to a
novel prediction for the rate of heating for cold atoms in optical billiards with vibrating walls. The
Hamiltonian matrix of the driven system does not look like one from a Gaussian ensemble, but
rather it is very sparse. This sparsity can be characterized by parameters s and gs that reflect the
percentage of large elements, and their connectivity, respectively. For gs we use a resistor network
calculation that has direct relation to the semilinear response characteristics of the system.
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The heating of particles in a box with vibrating walls
is a prototype problem for exploring the limitations of
linear response theory (LRT) and the quantum-to-classical
correspondence (QCC) principle. In the experimental
arena this topic arises in the theory of nuclear friction [1],
and more recently in the studies of cold atoms that
are trapped in optical billiards [2]. It is also related
to the analysis of mesoscopic conductance of ballistic
rings [3]. Formally the dynamics is generated by a time-
dependent Hamiltonian H[f(t)], where f(t) parametrizes
the displacement of boundary, analogous to the time-
dependent electric field of the conductance problem. In
typical circumstances the classical analysis predicts an
absorption coefficient G that is determined by the Kubo
formula [4–8], leading to the “Wall formula” in the nuclear
context, or to the analogous “Drude formula” in the
mesoscopic context.
If upon quantization we get for the absorption coefficient

an �-dependent result, that does not correspond to the
classical result, we call it an anomaly. The question arises
what are the circumstances in which anomalies show
up [6–12]. There are “microscopic circumstances” in which
an anomaly is not a big surprise: 1) If f(t) is slowly
varying, so-called quantum adiabatic parametric driving,
then Landau-Zener transitions between neighboring levels
might be the dominant mechanism for heating [6], and
hence QCC is not expected. 2) If f(t) is low-frequency
noisy driving, that induces Fermi Golden Rule (FGR)
transitions between neighboring levels only, the result

(a)E-mail: dcohen@bgu.ac.il

would be determined by the level spacing statistics, and
hence QCC is not expected [11].
In this letter we identify a “weak quantum chaos

regime” where a quantum anomaly shows up in quite
typical “mesoscopic circumstances”, where QCC would be
expected by common wisdom.

Modeling. – We consider a weakly chaotic billiard
that has linear size L and a convex wall of radius R. The
Hamiltonian can be written schematically as

H[f(t)] = H− f(t)F = H0+U − f(t)F. (1)

Specifically with regard to the numerical example of fig. 1,
H0 describes a non-deformed rectangular box of length
Lx =L= 1.5 (upper edge), and width Ly = 1.0. The term
U describes the deformation of the fixed (left) wall: it
is an arc of radius R= 8 whose center of curvature is
shifted upwards a vertical distance Δy= 0.1 to break the
reflection symmetry. The term F is the perturbation due
to the displacement f(t) of the moving (right) wall which
can be regarded as a piston. Later we characterize the time
dependence of f(t).
Our interest is focused in circumstances in which the

Lyapunov (correlation) time tR =R/vE is much longer
than the ballistic time tL =L/vE, where vE = (2E/m)

1/2

is the velocity of the particle. Turning to the quantum
analysis we realize that the minimal model for H depends
on two dimensionless parameters:

u=L/R (dimensionless deformation), (2)

�= λE/L (dimensionless Planck constant). (3)
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Fig. 1: (Colour on-line) Sketch of the billiard system of eq. (1).
The unperturbed billiard is a rectangle of size Lx = 1.5 and
Ly = 1.0. The deformation U , due to the curvature of the
left wall (radius R= 8), is characterized by the parameter
u=Ly/R. In order to break the mirror symmetry the center of
the curved wall is shifted upwards a vertical distance Δy= 0.1.
The time-dependent perturbation is due to the displacement
f(t) of the right wall. In the numerics the units are chosen
such that �Planck = 1 and the mass is m= 1/2. The image in
the background represents the eigenstate En ≃ 13618.

Fig. 2: Image of the perturbation matrixX = {|Fnm|
2} for the

billiard of fig. 1 within the energy window 3500<En < 4000.
This matrix is sparse. More generally it might have some
texture. The latter term applies if the arrangement of the large
elements is characterized by some pattern.

Here λE = 2π�Planck/(mvE) is the de Broglie wavelength.
For a given deformation (R determines u) and energy
window (E determines �) we calculate the eigenvalues
and eigenfunctions of H using the boundary element
method [13], find the ordered eigenenergies En, and
calculate the matrix elements Fnm using the formula

Fnm =−
1

2m

∫

ϕ(n)(y)ϕ(m)(y) dy, (4)

where ϕ(n)(y) is the normal derivative of the n-th eigen-
function along the piston boundary. An image of a repre-
sentative matrix is displayed in fig. 2, and its bandprofile
is presented in fig. 3.

The absorption coefficient. – Having in mind cold
atoms in an optical trap, we regard the wall vibrations,
say of the “piston”, as low-frequency noisy driving. The
power spectrum of ḟ(t) is described by a spectral function

S̃(ω) = ε2
1

2ωc
exp

(

−
|ω|

ωc

)

. (5)

As is common in the mesoscopic context we assume its
spectral support to be ωc � 1/tR, but larger compared
with the mean level spacing. Accordingly, in the numerics
it is natural to take ωc as matching the first minimum in
the bandprofile of fig. 3.
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Fig. 3: (Colour on-line) The bandprofile of the matrix. (a) The
algebraic average and median along the diagonals of the Xnm
matrix vs. ω≡ (En−Em). The vertical axis is normalized with
respect to C∞, while the horizontal axis is ω/vE. The classical
power spectrum is presented to demonstrate the applicability of
the semiclassical relation eq. (9). The red line is the analytical
expression that applies to zero deformation. The quantum
analysis is for R= 8 with 100<E < 4000 (EW1), and with
10000<E < 14000 (EW2). The dotted vertical line is the
frequency 1/tL and the dashed one is 1/tR. (b) Zoom of the
ω≪ 1/tL region. For sake of comparison we display results also
for R= 2. The vertical lines indicate the mean level spacing.
The dashed red curves are a refined version of eq. (12).

Following [12] we assume that there are FGR tran-
sitions between levels, whose rate is proportional to
|Fnm|

2S̃(En−Em). As a result the system absorbs energy
in rate Gε2 analogous to Joule heating. We define

G0 =
1

2T
C∞ ≡

1

2T

[

8

3π

m
2v3E
Lx

]

. (6)

This is the classical hard chaos result for the absorption
coefficient, which is obtained, e.g. using a kinetic picture,
if one neglects correlations between successive collisions.
This is a straightforward adaptation of the well-known
“Wall formula” of nuclear physics, which is analogous to
the “Drude formula” in condensed-matter physics.

Objective. – Our objective is to calculate the actual
absorption coefficient G, i.e. to go beyond the “Wall
formula” prediction, taking into account the implications
of having tR≫ tL, which is the case for small deforma-
tion (u≪ 1). The calculation of the actual absorption
coefficient G will be done below either within the frame-
work of LRT using the Kubo formula (getting GLRT), or
within the framework of the semilinear response theory
(SLRT) [10–12] using a resistor network calculation
(getting GSLRT). The correlations between collisions lead
to an LRT result that we would like to write as GLRT =
gcG0. Similarly it is convenient to write the outcome of
the SLRT analysis as

GSLRT = gsGLTR = gs gcG0 = g G0. (7)

If QCC considerations apply, then gs ∼ 1 with small
�-dependent corrections. The LRT and SLRT numerical
results for g are displayed in fig. 4, and the details are
presented in what follows.

Conflicting expectations. – Both in LRT and in
SLRT the result for G depends on the “average” over
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Fig. 4: (Colour on-line) SLRT vs. LRT. The scaled absorption
coefficient gc (LRT) and g= gsgc (SLRT) (a) vs. the dimen-
sionless 1/�, and (b) vs. the dimensionless deformation para-
meter u=L/R. Note that g= 1 is the prediction of the “Wall
formula”, while the line is based on the classical analysis. In
the upper panel the analysis has been done for the billiard of
fig. 1. The calculation of each point has been carried out on
a 100× 100 sub-matrix of X centered around the � implied
energy E. The “untextured” data points are calculated for
an artificial random matrices with the same bandprofile and
sparsity (but no texture). The complementary lower panel is
oriented to show the small u-dependence. The analysis is based
on a truncated matrix representation of H0+U , within an
energy window that corresponds to 1/�∼ 9. Due to the trun-
cation there is some quantitative inaccuracy with regard to the
larger g values.

the near diagonal elements of |Fnm|
2, i.e. those that are

in the strip |En−Em|� ωc. The difference between LRT
and SLRT is how this “average” is defined: as a simple
algebraic average, or via a resistor network calculation.
For a small deformation, first order perturbation theory
(FOPT) implies that these couplings are ∝ u2. But as u
becomes larger the common expectation, based on Wigner
theory, is to have Lorentzian mixing of levels, leading to
∝ 1/u2 smearing. In the formally equivalent problem of
a conductance calculation this implies G∝ 1/u2, where
u represents the strength of the disordered potential
(instead of using the FGR or Wigner picture one can
use the equivalent Drude picture where the Born mean
free path is ∝ 1/u2). On the other hand, the semiclassical
expectation, based on kinetic considerations, is to have,
because of the bouncing, enhanced energy absorption ∝
1/u. Loosely speaking the latter expectation follows from
the observation that a sequence of 1/u correlated collisions
with the piston is like a single big collision. The purpose
of the following paragraphs is to resolve this confusion
by adopting a generalized random matrix theory (RMT)
perspective.

RMT modeling. – So-called “quantum chaos” is the
study of quantized chaotic systems. Assuming that the
classical dynamics is fully chaotic, as in the case of a
billiard with convex walls (fig. 1), one expects the Hamil-
tonian to be like a random matrix with elements that have
a Gaussian distribution. This is of course a sloppy state-
ment, since any Hamiltonian is diagonal in some basis.
The more precise statement is following [14]: assume that
H generates chaotic dynamics, and consider an observable

F that has some classical correlation function C(t), with
some correlation time tR. Then the matrix representation
Fnm in the basis of H looks like a random banded matrix.
The bandwidth is �/tR. If tR is small, such that the band-
width is large compared with the energy window of inter-
est, then the matrix looks like it is taken from a Gaussian
ensemble.
What we observe, we would like to call “weak quantum

chaos” (WQC) circumstances, for which the tradi-
tional RMT modeling does not apply. Namely, in such
circumstances it is not enough to characterize Fnm
by its semiclassically determined bandprofile. Rather
one should further characterize Fnm by its quantum-
mechanically-determined sparsity [15] and by its texture.

Bandprofile. – Define a matrix X whose elements
are Xnm = |Fnm|

2. The bandprofile C̄a(r) is obtained by
averaging the elements Xnm along the diagonals n−m=
r, within the energy window of interest. In the same way
we also define a median based bandprofile C̄s(r). See fig. 3
for numerical results. The mean level spacing is

Δ0 = 2π/(mLxLy). (8)

Given that Δ0 is small compared with the energy range of
interest, it is well known [14] that

C̄a(n−m) =

(

2π

Δ0

)

−1

C̃(En−Em), (9)

where C̃(ω) is the classical power spectrum, that can be
obtained via the Fourier transform (FT) of the classical
auto-correlation function 〈F (0)F (t)〉. In the numerical
analysis F (t) corresponds to a very long ergodic trajectory.
It consists of impulses, namely

F (t) =
∑

j

2mvE cos(θj) δ(t− tj), (10)

where θj is the collision angle with the piston at time

tj . By the Wiener-Khinchin theorem C̃(ω)∝ |Fω|
2, where

Fω = FT [F (t)]. For technical details see [16]. The result of
the calculation is displayed in fig. 3 (black continuous line).
Comparing with the quantum result one observes that the
applicability of eq. (9) to the analysis of our billiard system
is confirmed down to very small frequencies.
Analytical results for C̃(ω) can be obtained. For large

frequencies the power spectrum becomes flat and reaches
the constant value [12]

C(ω≫ 1/tL) =
8

3π

m
2v3E
Lx

≡ C∞. (11)

For intermediate frequencies the effect of the deformation
is mainly to ergodize the collision angle and one can
obtain analytical expression (represented in fig. 3 by the
dashed red line). For small frequencies the effect of the
deformation is less trivial and we find that the power
spectrum is logarithmically divergent:

C̃(ω≪ 1/tL)≈m
2v3E

R

2L2x
ln
2

ωtR
. (12)
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The divergence comes because there are vertically bounc-
ing trajectories with very long horizontal bouncing period,
as in the related analysis of [17]. Disregarding the logarith-
mic term one observe that compared with C∞ the bounc-
ing leads to enhancement by factor 1/u, which is the ratio
tR/tL.

Sparsity and texture. – For strongly chaotic
systems the elements within the band have approximately
a Gaussian distribution. But in the WQC regime the
matrix becomes sparse and textured as demonstrated
in fig. 2. Loosely speaking, sparsity means that only a
small fraction (s≪ 1) of elements are large1, while the
texture refers to their non-random arrangement. In the
WQC regime the size distribution of the in-band elements
becomes log-wide (approximately log-normal). This is
reflected by having

C̄s(r) ≪ C̄a(r) (13)

as seen in fig. 3. The sparsity and the texture of X
are important for the analysis of the energy absorption
rate [12] as implied by SLRT [10,11]. Accordingly, we
suggest to characterize the sparsity by a resistor network
measure

gs = gs[X]≡ 〈〈X〉〉s/〈〈X〉〉a. (14)

Here 〈〈X〉〉a is the algebraic average over the in-band
elements of the matrix, while 〈〈X〉〉s is the corresponding
resistor network “average” that takes their connectivity
into account. The recipe of the resistor network calculation
is detailed in the next paragraph (can be skipped in first
reading). For a strictly uniform matrix gs = s= 1, for
a Gaussian matrix s= 1/3 and gs ∼ 1, while for sparse
matrix s, gs≪ 1.
The resistor network quantity 〈〈X〉〉s can be regarded

as a smart average over the elements ofX, that takes their
connectivity into account. For its calculation we associate
with X a matrix g whose elements are

gnm = 2δ0(n−m)Xnm / (n−m)
2 (15)

where
∑

r δ0(r) = 1 is a weight function, whose width
should be quantum mechanically large (i.e. ≫ 1) but
semiclassically small (i.e. � the bandwidth). If we take
this weight function to be the normalized version of S̃(ω),
then gnm can be interpreted as the (normalized) Fermi
golden rule transition rates that would be induced by
a low-frequency driving. Optionally we can regard these
gnm as representing connectors in a resistor network. The
inverse resistivity of the strip can be calculated using
the standard procedure, as in electrical engineering, and
the result we call 〈〈X〉〉s. It is useful to notice that if
all the elements of X are identical, then 〈〈X〉〉s equals
the same number. More generally 〈〈X〉〉s is smaller than

1A precise definition of the sparsity s can be found in sect. III
of [18], but it is not of much physical interest for us. Rather we
characterize the sparsity by the resistor network measure gs as
defined below, which has direct relation to the response analysis.

the conventional algebraic average 〈〈X〉〉a (calculated with
the same weight function). In the RMT context a realistic
estimate for 〈〈X〉〉s can be obtained using a generalized
variable-range-hopping procedure [18].

The WQC regime. – With the classical tL and tR,
we can associate the energies

ΔL = 2π/tL, ΔR = 2π/tR. (16)

Conversely, with the mean levels spacing we can asso-
ciate the Heisenberg time tH = 2π/Δ0. Note that tH =
(1/�)d−1tL where d= 2. It is also possible to define
the Ehernfest time tE = [log(1/�)]tR, which is the time
required for the instability to show up in the quantum
dynamics. The traditional condition for “quantum chaos”
is tE≪ tH, but if we neglect the log factor it is simply
tR≪ tH. This can be rewritten as ΔR≫Δ0, which we
call the frequency domain version of the quantum chaos
condition. Optionally one may write a parametric version
of the quantum chaos condition, namely u≫ ub, where

ub = � (de Broglie deformation). (17)

The frequency domain version implies that it should be
possible to resolve the zero-frequency peak of C̃(ω) as in
fig. 3, while the parametric version means that a de Broglie
wavelength deformation of the boundary is required to
achieve “Quantum chaos”.
We observe in the upper panel of fig. 4 that gs is signif-

icantly smaller than unity, even for very small values of
� for which u> ub is definitely satisfied. For completeness
we show in the lower plot additional data points in the
regime u< ub where this breakdown of QCC is not a big
surprise. We conclude that QCC for u> ub is restricted to
C̃(ω), and does not imply Hard quantum chaos (HQC),
but only WQC. In the WQC regime C̄s(r)≪ C̄a(r) and
consequently gs≪ 1, indicating sparsity.
The emergence of WQC instead of HQC can be

explained as follows. If a wall of a billiard is deformed,
the levels are mixed. FOPT is valid provided |Unm|<Δ0.
This condition determines a parametric scale uc. If the
unperturbed billiard were chaotic, the variation required
for level mixing would be [19] uc ≈ λE/(kEL)

1/2 = �3/2.
This expression assumes that the eigenstates look like
random waves. In the Wigner regime (uc <u<ub) there
is a Lorentzian mixing of the levels and accordingly, the
number of mixed levels is ∼ (u/uc)

2. But our unperturbed
(rectangular) billiard is not chaotic, the unperturbed
levels of the non-deformed billiards are not like random
waves. Therefore, the mixing of the levels is non-uniform.
By inspection of the Unxny,mxmy matrix elements one

observes that the dominant matrix elements that are
responsible for the mixing are those with large nx but
small |ny −my|. Accordingly, within the energy shell
Enxny ∼E, the levels that are mixed first are those with
maximal nx, while those with minimal nx are mixed last.
The mixing threshold for the former is

uc ≈ λE/(kEL) = �
2 (18)

20009-p4
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while for the latter one finds u∞c ∼ �
0, which is much larger

than ub = �
1. A straightforward analysis of this mixing

(extending that of [12]) leads to the result

g≈ u2/�. (19)

This is merely the ratio of the median value to the mean,
and the proportionality to u2 is the remnant of FOPT.
This simple dependence is confirmed by the numerics of
fig. 4. We note that the RMT perspective of [18] implies
that in general this median-based estimate should be
corrected. Roughly the prescription is

g 
→max{1, g exp[
√

− ln b ln g]}, (20)

where b= ωc/Δ0 is the dimensionless bandwidth.
In the numerics g is calculated for a bandwidth match-

ing spectral width, i.e. the spectral support of S̃(ω) is
assumed to be∼ΔR, implying gc ∼O(1) and g∼ gs. In the
quantum-mechanical LRT calculation which is presented
in fig. 4 by the black line gc depends on �, because Δ0
provides a lower cutoff on the logarithmically divergent
C̃(ω).
If the spectral support of the driving were ≪ΔR, the

classical correlation factor would be gc ∼ 1/u, and conse-
quently gs ∼ u

3/�. Still, the bandwidth is the significant
scale in the “quantum chaos” perspective, and there-
fore the parametric scale that signifies the WQC-HQC
crossover is

us = �
1/2 (21)

which is larger than ub = �. Accordingly, the WQC regime
extends well beyond the traditional boundary of the
Wigner regime, and in any case it is well beyond the FOPT
border uc.

Discussion. – In a broader perspective the term
“weak quantum chaos” is possibly appropriate also to
system with zero Lyapunov exponent (tR =∞), e.g. the
triangular billiard [20], and pseudointegrable billiards [21],
and to systems with a classical mixed phase space. But
in the present study we wanted to consider a globally
chaotic system, under semiclassical circumstances such
that ΔR is quantum mechanically resolved and QCC is
naively expected. In this context there are of course other
interesting aspects, such as bouncing related corrections
to Weyl’s law [22], and non-universal spectral statistics
issues (see below), while our interest was with regard to
the semilinear response characteristics of the system.
The spectral statistics in the WQC regime has been

studied in [23] concerning nearly circular stadium billiard,
and in [24] concerning circular billiards with a rough
boundary. Let us remind very briefly how the WQC border
is determined in this context. It is convenient to describe
the dynamics using a Poincare map, which relates the
angle θτ of successive collisions (τ = 1, 2, 3, . . .) with the
piston. One observes that due to the accumulated effect
of collisions with the deformed boundary, there is a slow
diffusion of the angle with coefficientDθ ∼ u

2. Accordingly
the classical ergodic time is τr ∼ 1/Dθ, and the quantum

breaktime due to a dynamical localization effect is τh ∼
Dθ/�

2. The border of the WQC regime is defined by the
condition τh < τr leading to eq. (21). However we would
not like to over-emphasize this consistency because it is
not a priori clear that spectral statistics and sparsity-
related characteristics always coincide.

Practical implications. – Coming back to the
“conflicting expectations” issue, with regard to the value
of the absorption coefficient and its dependence on the
deformation u, we now can see how they reconcile. First
of all it should be clear that if there were no classical
correlations between bounces, then C̃(ω) would be flat,
equals to the value C∞ of eq. (11), leading to the wall
formula eq. (6) for G. The effect of bouncing is to
enhance C̃(ω≪ 1/tL) as implied by eq. (12). Depending
on whether the spectral support of the driving is ωc≪ΔR
or ωc ∼ΔR we observe or do not observe a 1/u enhance-
ment. This holds classically and also in the quantum LRT
calculation (provided ωc >Δ0) due to QCC.
However, the SLRT calculation, unlike the LRT calcu-

lation, cares about the median and not about the mean.
Therefore, for a weakly chaotic system, it give a much
smaller result for G. If the mixing of the levels were
uniform we would expect a crossover from gs ∝ u

2 (FOPT)
to gs ∝ 1/u

2 (Wigner), as in the theory of disordered
conductors. But the mixing of levels in a weakly chaotic
system, unlike in a weakly disordered system, is not
uniform, and therefore the gs ∝ u

2 persists within a very
large range uc <u< us, to which we refer as the WQC
regime.

Experimental feasibility. – Having a better under-
standing of the WQC regime we are now able to revise
the suggested experiment in [12]. Let us consider 85Rb
atoms that are laser cooled to low temperature T ≈ 0.1µK,
such that the de Broglie wavelength is λE = 1µm. The
atoms are trapped in an optical billiard of linear size
L= 10µm, and accordingly the dimensionless Planck con-
stant is �= 0.1. This leads to ΔL/Δ0 = 30. Note that
ΔL = 220Hz, and Δ0 = 7.5Hz.
Assuming 10% deformation the dimensionless band-

width can be tuned as b≡ (ΔR/Δ0)∼ 10. By modulating
the laser intensity, one of the billiard walls can be noisily
vibrated. We assume that the driving is band-matching,
i.e. ωc ∼ΔR. These are roughly the same parameters as
in our numerical analysis. The prediction for the SLRT
suppression factor is gs ∼ 0.1.
In order to witness the SLRT anomaly the RMS ampli-

tude of the vibrations (ε) should be large enough, as to
have a measurable heating effect. Assuming that it is possi-
ble to hold the atoms for a duration of ∼1000 bounces
the condition can be written in a dimensionless form as
G0ε

2/(TΔL)> 10
−3, or roughly as (ε/L)2 > 10−3.

On the other hand ε should be small enough, such that
the FGR condition is not violated. It is straightforward
to show that the FGR condition can be written in
a dimensionless form as TG0ε

2/Δ30 < b
3, or roughly as
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(ε/L)< (1/b). Accordingly there is a range where both
conditions are satisfied, and there the SLRT anomaly
should be observed, provided environmental relaxation
effects can be neglected.

Comments. – It is important to realize that we are
studying in this work a driven chaotic system, and not a
driven integrable system. Remarkable examples for driven
integrable systems are the kicked rotator [25] and the
vibrating elliptical billiard [26]. In the absence of driving
such systems are integrable, while in the presence of
driving a mixed phase space emerges. This is not what
we call here weak chaos.
The low-frequency driving that we assume is stochastic,

rather than periodic. This looks to us realistic, reflecting
the physics of cold atoms that are trapped in optical
billiards with vibrating walls. It is also theoretically
convenient, because we can use the FGR picture. If one
is interested in periodic driving of strictly isolated system,
then there are additional important questions with regard
to dynamical localization [27] that can be handled e.g.
within the framework of the Floquet theory approach.

Summary. – The discovery of “anomalies”, i.e. major
deviations from QCC in circumstances where QCC is
expected by common wisdom, is a major challenge in
quantum-mechanics studies. For example: Anderson’s
localization (wave functions were commonly expected
to be extended); Heller’s scars (wave functions were
commonly expected to look like random waves). Here we
highlighted an anomaly in the theory of response: the
rate of heating is unexpectedly suppressed for a quantized
chaotic system.
Our analysis has been based on SLRT. This theory

applies to circumstances in which the environmental relax-
ation is weak compared with the f(t)-induced transitions.
In such circumstances the connectivity of the transitions
from level to level is important, and the LRT result should
be multiplied by gs.
We have highlighted that there is a distinct WQC

regime, where semiclassics and Wigner-type mixing co-
exist. This is the regime where an LRT to SLRT crossover
is expected as the intensity of the driving is increased.
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